
Binding python to other
languages (Fortran and C)

Overview

• One of the beauties of python is the ease with which
you can bind it to low-level programming languages.

• Allows python to be a scripting interface on top of
optimised CPU-intensive processing code.

• Examples are CDAT and MetPy developed by
ECMWF.

• Numerous packages are available to do this.
• Here we present Pyfort, F2PY for Fortran bindings

and a quick look at C bindings.

Python/Fortran bindings

• For Fortran scientific Fortran programmers the
progression to a new package involves:

1. Learning of a new package/language
2. Transferral of old code, re-writing, optimisation

etc.
• These are barriers to switching.
• Imagine if you could just plug in your old functions

and subroutines directly to your new package.
• Enter Python/CDAT, in association with Pyfort or

F2PY.

Locating and installing the packages

• You can freely download the packages at:
– Pyfort - http://pyfortran.sourceforge.net
– F2PY - http://cens.ioc.ee/projects/f2py2e

• Installation:
– Both Pyfort and F2PY are now installed as part of CDAT and

so is already available on a number of our linux machines
under the directory:

/<your_cdat>/bin/[pyfort|f2py]

*Much of the information in this document was stolen from:
http://www.prism.enes.org/WPs/WP4a/Slides/pyfort/pyfort.html

http://pyfortran.sourceforge.net/
http://cens.ioc.ee/projects/f2py2e
http://www.prism.enes.org/WPs/WP4a/Slides/pyfort/pyfort.html

Pyfort Introduction

*Much of the information in this document was stolen from:
http://www.prism.enes.org/WPs/WP4a/Slides/pyfort/pyfort.html

http://www.prism.enes.org/WPs/WP4a/Slides/pyfort/pyfort.html

Pyfort Usage: Overview (1)

• The interface to pyfort is relatively simple:

1. Pyfort takes a file or number of files holding Fortran
functions and/or subroutines.

2. These are compiled and linked to a library.
3. The user then hand edits a Pyfort (.pyf) text file describing

the interface to each function/subroutine.
4. The pyfort command is then run with the necessary

arguments to produce some C code to describe the Fortran
interface to python. Pyfort automatically compiles this C
code into what is called a Python Extension Module (.so).

5. The Python Extension Module can then be imported directly
into python with the functions/subroutines visible as module
level python functions.

Pyfort Usage: Overview (2)

• This means that once you have created a Python
Extension Module using Pyfort you will always have
access to it at the Python level and, from the user’s
perspective, it appears just like any other Python
function.

Pyfort: A simple example (1)

• Below is a basic Fortran subroutine that has been connected to
python. It demonstrates the use of the Pyfort interface without
any complex code to confuse you:

• The itimes.f contains the subroutine itimes which takes in two
Numeric arrays (x and y) of length n and returns an array (w) of
the same length where w(i)=x(i)*y(i).

subroutine itimes(x,y,n,w)
integer x(*)
integer y(*)
integer w(*)
integer n
integer i
do 100 i=1,n
w(i) = x(i) * y(i)

100 continue
return
end

Pyfort: A simple example (2)

The two subroutines where placed in the files 'addone.f'
and 'minusone.f' and compiled them as follows:

g77 -c itimes.f

The compiled subroutines were then linked into a
fortran library called libitimes.a:

ld -r -o libitimes.a itimes.o

Pyfort: A simple example (3)

You then need to write a Pyfort script declaring the parameters
involved called testpyf.pyf:
SUBROUTINE ITIMES(X, Y, N, W)
! times (x,y,n,x) sets (i)=x(i)*y(i), i=1,n
integer, intent(in):: x(n), y(n) ! must have

size n
integer, intent(out)::w(n)
integer n
END SUBROUTINE itimes

• Finally, run Pyfort with the following arguments to produce the
C code that glues it all together (this allows you to call the
module and functions from python):

pyfort -c g77 -i -l./itimes testpyf.pyf

Pyfort: A simple example (4)

• The output of this compilation was the production of a Python
Extension Module called testpyf.so located at:

build/lib.linux-i686-2.2/testpyf.so

• You can then import this module directly into python and call
both subroutines as python functions:
> import sys ;

sys.path.append('build/lib.linux-i686-2.2')
> import testpyf, Numeric
> x=Numeric.array([1,2,3]) ;

y=Numeric.array([4,5,6])
> n=len(x) ; print "itimes", x, y
itimes [1,2,3] [4,5,6]
> print testpyf.itimes(x,y,n)
[4,10,18]

F2PY Introduction

• You can freely download the packages at:

*Much of the information in this document was stolen from:
http://www.prism.enes.org/WPs/WP4a/Slides/pyfort/pyfort.html

http://www.prism.enes.org/WPs/WP4a/Slides/pyfort/pyfort.html

F2PY Usage: Overview (1)

• F2PY demonstrates greater functionality than Pyfort,
for example you can return character arrays, deal
with allocatable arrays and common blocks,
which pyfort does not allow.

• The F2PY interface is potentially simpler than that
for Pyfort, but there are various methods you can
choose from. The F2PY documentation takes you
through these methods.

F2PY Usage: Overview (2)

• The following example below shows the simplest
method where you can do everything in one line.
Note that if you have arguments with the intent ‘out’
or ‘inout’ then you will probably need to hand edit
the ‘.pyf’ file or the original Fortran code.

F2PY: A simple example (1)

1. Create a fortran file such as hello.f:
C File hello.f

subroutine foo (a)
integer a
print*, "Hello from Fortran!"
print*, "a=",a
end

2. Run F2PY on the file:
f2py -c -m hello hello

F2PY: A simple example (2)

• Run python and import the module, then call the
subroutine as a function:

$ python
> import hello
> hello.foo(34)
‘Hello from Fortran!’
a= 34

Choosing between Pyfort and F2PY

• F2PY is the more comprehensive of the two
packages (providing support for returning
character arrays, simple F90 modules, common
blocks, callbacks and allocatable arrays) but if
pyfort does what you want, it may be easier to get to
grips with.

• Both Pyfort and F2PY are useful tools and
deciding on which one to use will depend on a
number of issues. In theory, using either tool should
be a quick (less than 1 hour) job but determining the
duration will depend on issues such as:

How to choose

• Which package am I experienced with?
• Which package is available already on my platform?
• How long does it take to install (if not already present)?
• Which Fortran compiler am I using?
• Can I get away with the quick F2PY solution that involves

no hand editing of files?
• Do I need to return character arrays from my subroutine

(in which case you need to use F2PY)?
• Am I using callbacks (need F2PY again)?
• Do I need to handle F90 modules (need F2PY again)?
• Do I need to use Common Blocks (need F2PY again)?
• Does my code use Allocatable Arrays (need F2PY again)?

Additional info

• Your Fortran files and libraries need to compiled by
the same compiler that you specify for the python-
fortran software to use.

Connecting C to Python
• It is quite easy to add new built-in modules to Python, if you

know C.
• Python extension modules can do two things that can't be

done directly in Python, they can:
– implement new built-in object types
– call C library functions and system calls.

• To support extensions, the Python API (Application
Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python
run-time system.

• The Python API is incorporated in a C source file by including
the header "Python.h".

• The compilation of an extension module depends on its
intended use as well as on your system set-up details are
given in later chapters.

The Python API in C: A simple example (1)

• Let's create an extension module called "spam" and
let's say we want to create a Python interface to the
C library function system(). This function takes a
null-terminated character string as argument and
returns an integer. We want this function to be
callable from Python as follows:

>>> import spam
>>> status = spam.system("ls -l")

• Begin by creating a file spammodule.c.
(Historically, if a module is called "spam", the C file
containing its implementation is called
spammodule.c; if the module name is very long, like
"spammify", the module name can be just
spammify.c.)

*Much of the information in this document was stolen from the official
python documentation at: http://www.python.org

http://www.python.org/

The Python API in C: A simple example (2)

• The first line of our file can be:
#include <Python.h>

• which pulls in the Python API (you can add a
comment describing the purpose of the module and
a copyright notice if you like). Since Python may
define some pre-processor definitions which affect
the standard headers on some systems, you must
include Python.h before any standard headers are
included.

*Much of the information in this document was stolen from the official
python documentation at: http://www.python.org

http://www.python.org/

The Python API in C: A simple example (3)

• All user-visible symbols defined by Python.h have a
prefix of "Py" or "PY", except those defined in
standard header files.

• For convenience, and since they are used
extensively by the Python interpreter, "Python.h"
includes a few standard header files: <stdio.h>,
<string.h>, <errno.h>, and <stdlib.h>. If the latter
header file does not exist on your system, it
declares the functions malloc(), free() and realloc()
directly.

*Much of the information in this document was stolen from the official
python documentation at: http://www.python.org

http://www.python.org/

The Python API in C: A simple example (4)

• The next thing we add to our module file is the C function that
will be called when the Python expression
“spam.system(string)“ is evaluated (we'll see shortly how it
ends up being called):

static PyObject *
spam_system(PyObject *self, PyObject *args)
{
char *command;
int sts;
if (!PyArg_ParseTuple(args, "s", &command))

return NULL;
sts = system(command);
return Py_BuildValue("i", sts);
}

*Much of the information in this document was stolen from the official
python documentation at: http://www.python.org

http://www.python.org/

SWIG (Simplified Wrapper and Interface Generator)

• SWIG is a useful tool that allows you to create python
wrappers for C code with very little knowledge of the
Python C API (but it might not always work).

• It works by taking the declarations found in C/C++
header files and using them to generate the wrapper
code that scripting languages need to access the
underlying C/C++ code.

• The SWIG interface compiler also connects
programmes written in C and C++ with other
languages including Perl, Ruby, and Tcl.

*Much of the information in this document was stolen from the official
python documentation at:

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

SWIG Example (1)

*Much of the information in this document was stolen from the official
python documentation at:

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

SWIG Example (2)

*Much of the information in this document was stolen from the official
python documentation at:

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

	Binding python to other languages (Fortran and C)
	Overview
	Python/Fortran bindings
	Locating and installing the packages
	Pyfort Introduction
	Pyfort Usage: Overview (1)
	Pyfort Usage: Overview (2)
	Pyfort: A simple example (1)
	Pyfort: A simple example (2)
	Pyfort: A simple example (3)
	Pyfort: A simple example (4)
	F2PY Introduction
	F2PY Usage: Overview (1)
	F2PY Usage: Overview (2)
	F2PY: A simple example (1)
	F2PY: A simple example (2)
	Choosing between Pyfort and F2PY
	How to choose
	Additional info
	Connecting C to Python
	The Python API in C: A simple example (1)
	The Python API in C: A simple example (2)
	The Python API in C: A simple example (3)
	The Python API in C: A simple example (4)
	SWIG (Simplified Wrapper and Interface Generator)
	SWIG Example (1)
	SWIG Example (2)

